# C/N ratios, $\delta^{13}$ C, and $\delta^{15}$ N analyses of biomass from metallimited nitrogen fixing cyanobacteria

#### Aubrey L. Zerkle

Department of Geosciences
Pennsylvania State University
207 Deike Building, University Park, PA 16802
USA
azerkle@geosc.psu.edu

### Christopher K. Junium

Department of Geosciences Pennsylvania State University USA

## Christopher H. House

Department of Geosciences Pennsylvania State University USA

#### Raymond P. Cox

Department of Biochemistry and Molecular Biology University of Southern Denmark DENMARK

#### Donald E. Canfield

Danish Center for Earth Systems Science and Institute of Biology
University of Southern Denmark
DENMARK

We grew *Anabaena variabilis* strains ATCC 29413 and 27893 in N-free media in continuous and batch cultures under Fe- and Mo-limited conditions. Results suggest that elemental and isotopic ratios vary with growth and  $N_2$  fixation rates, controlled primarily by media metal concentrations. In heterotrophic growth experiments, carbon to nitrogen ratios varied from 5 to 7, except for higher C/N of up to ~8 in continuous culture and low-Fe low-Mo media. C/N ratios generally decreased with increasing growth rates and increasing nitrogen fixation rates, especially in Fe-limited experiments. Carbon isotopic ratios ranged from -28 to -24‰, increasing overall with increasing growth and nitrogen fixation rates. The exception was in Mo-limited experiments, where  $\delta^{13}$ C decreased slightly with increasing Mo concentrations. Nitrogen isotopic ratios ranged over ~6‰, generally increasing with increasing growth and nitrogen fixation rates in both Fe- and Mo-limited experiments. Elemental and isotopic ratios of biomass from autotrophic growth experiments are currently being analyzed.